

Introduction

Dale Osborn

Transmission Technical Director Midwest ISO

Vice Chair IEEE Wind Power Coordinating Committee dosborn@midwestiso.org

Wind Resource Potential

State	WIND POWER (MW) X 1000 MW	
	Existing ¹	Total Potential
Illinois	.05	7
lowa	.47	63
Minnesota	.56	75
Nebraska	.01	99
North Dakota Table 1 - Wind Resource Availability	.07	138
South Dakota	.04	117
Wisconsin	.05	6
Total	1.3	506

Notes:

[1] Nameplate MW, American Wind Energy Association, January 2004.

http://www.awea.org/

[2] Average MW, circa 33% of nameplate capacity, sourced from "An Assessment of Windy Land Area and Wind Energy Potential", Pacific Northwest Laboratory, 1991. Source: Wind on the Wires presentation on Net Environmental Impacts of Transmission Systems in the Midwest.

SD Barriers to Wind

- Supply and Demand
 - 506,000 MW of Supply
 - 5,000 MW of demand in MAPP
 - 8,000 MW if add Wisconsin
 - 18,000 MW for all of MISO 10% REO
 - 130,000 for all US at 10% REO

LMP Sample Sioux Falls

Day Ahead, Spot Market Information

- http://www.midwestmarket.org/
- Data only from April
- Every year is atypical
 - Hot
 - Low water levels for WAPA
 - Coal shortage
 - New Market

Barriers to Wind Energy

- Transmission availability where wind has been proposed or located
 - Locate wind generation near substations new substations cost money, new lines cost money
 - Build new transmission from prime wind locations
 - Queue process
 - Grouped process
 - Collector systems
 - Voltage selection limiting to capacity, economics
- Parochial attitudes- my wind my state
- Economics
 - Cost of wind compared to other neighboring resources
 - REO, RPS

Generation Queue Entries

A Vision for Transmission Infrastructure Investments

Realizing the CapX 2020 Vision

Information Briefing – Moving to Implementation

18 July 2005

Central Minnesota Municipal Power Agency

CAPX Recommended Transmission Concept Plan

Wind Resource Potential

Big Stone Transmission Options

- MISO will run PROMOD for
 - 230 kV option
 - 345 kV option to integrate more closely with CAPX increases export from SD possibly for wind

Plan Summary

- MN Renewable Energy Objective 10%
 - Converts an option to a requirement
 - Transmission is being built
 - Allow recovery of the costs without a rate case
- MN to study the maximum amount of wind that can be accepted
 - Power to regulate load from other generation to match load and generation is a probable limit

Summary

- Develop load to use wind locally
 - Link and Sync- hot water and ice energy storage
 - Hydro storage
 - Ludington Pumped Storage 1800 MW
 - Manitoba
 - WAPA
- Use existing substations and lines
 - Locate wind by subs- MISO rate subs
 - Only a few substations are needed if a collector system is built connecting wind generation

Summary

- MTEP 06 will address a 10% REO for MISO
 - Wait
 - Perhaps MN study will increase level
- Work with neighbors (MN, IA) for capacity
 - Big Stone expansion
 - White Sub
 - Split Rock Sub
- Raise energy prices for wind energy
 - Use bi-lateral contracts and FTR's to secure low prices locally
 - Support export lines from MAPP to higher priced areas
 - Gas prices- gas on margin sets price levels